Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles.

نویسندگان

  • Akhilesh K Gaharwar
  • Sandhya A Dammu
  • Jamie M Canter
  • Chia-Jung Wu
  • Gudrun Schmidt
چکیده

Unique combinations of hard and soft components found in biological tissues have inspired researchers to design and develop synthetic nanocomposite gels and hydrogels with elastomeric properties. These elastic materials can potentially be used as synthetic mimics for diverse tissue engineering applications. Here we present a set of elastomeric nanocomposite hydrogels made from poly(ethylene glycol) (PEG) and hydroxyapatite nanoparticles (nHAp). The aqueous nanocomposite PEG-nHAp precursor solutions can be injected and then covalently cross-linked via photopolymerization. The resulting PEG-nHAp hydrogels have interconnected pore sizes ranging from 100 to 300 nm. They have higher extensibilities, fracture stresses, compressive strengths, and toughness when compared with conventional PEO hydrogels. The enhanced mechanical properties are a result of polymer nanoparticle interactions that interfere with the permanent cross-linking of PEG during photopolymerization. The effect of nHAp concentration and temperature on hydrogel swelling kinetics was evaluated under physiological conditions. An increase in nHAp concentration decreased the hydrogel saturated swelling degree. The combination of PEG and nHAp nanoparticles significantly improved the physical and chemical hydrogel properties as well as some biological characteristics such as osteoblast cell adhesion. Further development of these elastomeric materials can potentially lead to use as a matrix for drug delivery and tissue repair especially for orthopedic applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles.

The structures and mechanical properties of both physically and covalently cross-linked nanocomposite hydrogels made from poly(ethylene glycol) (PEG) and silicate nanoparticles (Laponite RD) are investigated. Injectable nanocomposite precursor solutions can be covalently cross-linked via photopolymerization. The resulting hydrogels are transparent and have interconnected pores, high elongation ...

متن کامل

Highly extensible bio-nanocomposite fibers.

Here, we show that a poly(ethylene oxide) polymer can be physically cross-linked with silicate nanoparticles (Laponite) to yield highly extensible, bio-nanocomposite fibers that, upon pulling, stretch to extreme lengths and crystallize polymer chains. We find that both, nanometer structures and mechanical properties of the fibers respond to mechanical deformation by exhibiting strain-induced cr...

متن کامل

Elastomeric hydrogels by polymerizing silicone microemulsions.

Robust, transparent elastomeric hydrogels encoded with a bicontinuous structure result from the sequential photopolymerization of the aqueous hydroxyethyl methacrylate phase and crosslinking of the silicone phase of a silicone microemulsion stabilized with an acrylate-functional silicone-poly(ethylene glycol) surfactant.

متن کامل

Electrically conductive, tough hydrogels with pH sensitivity

Electrically conductive, mechanically tough hydrogels based on a double network (DN) comprised of poly(ethylene glycol) methyl ether methacrylate (PPEGMA) and poly(acrylic acid) (PAA) were produced. Poly(3,4-ethylenedioxythiophene) (PEDOT) was chemically polymerized within the tough DN gel to provide electronic conductivity. The effects of pH on the tensile and compressive mechanical properties...

متن کامل

Self-healable, tough and highly stretchable ionic nanocomposite physical hydrogels.

We present a facile strategy to synthesize self-healable tough and highly stretchable hydrogels. Our design rationale for the creation of ionic cross-linked hydrogels is to graft an acrylic acid monomer on the surface of vinyl hybrid silica nanoparticles (VSNPs) for the growth of poly(acrylic) acid (PAA), and the obtained VSNP-PAA nanobrush can be used as a gelator. Physical cross-linking throu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 12 5  شماره 

صفحات  -

تاریخ انتشار 2011